Gaussian Support Vector Machine Algorithm Based Air Pollution Prediction

نویسندگان

چکیده

Air pollution is one of the major concerns considering detriments to human health. This type leads several health problems for humans, such as asthma, heart issues, skin diseases, bronchitis, lung cancer, and throat eye infections. also poses serious issues planet. Pollution from vehicle industry cause greenhouse effect CO2 emissions. Thus, real-time monitoring air in these areas will help local authorities analyze current situation city take necessary actions. The process has become efficient dynamic with advancement Internet things wireless sensor networks. Localization main issue WSNs; if node location unknown, then coverage power routing are not optimal. study concentrates on localization-based prediction systems smart cities. These comprise two phases heavy or light traffic area using Gaussian support vector machine algorithm based pollutants, PM2.5 particulate matter, PM10, nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), sulfur (SO2). nodes localized basis predicted meta-heuristic algorithms called fast correlation-based elephant herding optimization. dataset divided into training testing parts 10 cross-validations. evaluation predicting pollutant localization performed dataset. Mean error localizing 9.83 which lesser than existing solutions accuracy 95%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcell prediction model based on support vector machine algorithm

A new microcell prediction model for mobile radio environment is presented in this paper. The popular support vector machine algorithm is used as an optimizing tool to build a model. In order to validate the model quality, extensive electric field strength measurements were carried out in the city of Belgrade, for two different test transmitter locations. The analysis of the model has shown tha...

متن کامل

Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds

In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...

متن کامل

Acoustic detection of apple mealiness based on support vector machine

Mealiness degrades the quality of apples and plays an important role in fruit market. Therefore, the use of reliable and rapid sensing techniques for nondestructive measurement and sorting of fruits is necessary. In this study, the potential of acoustic signals of rolling apples on an inclined plate as a new technique for nondestructive detection of Red Delicious apple mealiness was investigate...

متن کامل

Evaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data

Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, materials & continua

سال: 2022

ISSN: ['1546-2218', '1546-2226']

DOI: https://doi.org/10.32604/cmc.2022.021477